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Traveling-wave—standing-wave competition in a generalized complex Swift-Hohenberg equation
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We study both analytically and numerically the competition between traveling-wave and standing-wave
(SW) patterns in a unidimensional generalized complex Swift-Hohenberg equ&BHE appropriate for
describing nondegenerate optical parametric oscillation. We find that SWs can win this competition because of
the nonlinear resonance and nonlocal nonlinear phase modulation terms present in the CSHE. We also find a
domain of bistability between the two types of solutions. A good agreement between analytical predictions and
numerical simulation is foundS1063-651X98)50805-1

PACS numbd(s): 42.65.Sf, 47.54¢r

The transition from traveling wave§TWs) to standing In optical parametric oscillation &® medium placed
waves(SWs constitutes an interesting example of secondarnyinside an optical cavity transforms, through a down-
symmetry breaking which has been the subject of severaionversion two-photon process, a coherent driving field of
investigations in pattern formation studigs—4]. At a first  frequencyw  into two fields of frequencie$,w, (signa)
sight, TWs would be the preferred solution in infinitely ex- and f,w  (idler) (f;+f,=1). When the fields are nearly
tended phase unlocked systems while SWs would appear aggsonant with three longitudinal modes of the cavity, OPOs
natural solution when the spatially extended system is eithei® capable of forming complex spatial structures
limited by hard boundary conditions or is phase locked.  [6,8,10,11. In Ref.[6] we have shown that the order param-

This simple scenario can nevertheless be distorted by se@fer equation for an OPO is the following generalization of
eral factors. Appropriate hard boundary conditidaesy., re- the CSHE:
flecting wallg can stabilize SWs to TWEL], but intermedi- oy 1 5 -
ate states appear depending on the relative sizes of the  dY=(P=1)Y—|Y|*Y=3(A=d,—Ao|Y[*)?Y
defects induced by the boundary effects and of the transverse 1 * 92y _ 92k
domain [2]; thus, the transition from TWs to SWs being T2A0Y(YAY =Y oY), D
nontrivial. Moreover, the symmetry breaking leading from

TWSs to SWs is possible in boundary-free phase unlocketﬁ.\lhereY IS the order parametdproportional to the signal

. ield amplitude, P is a real parameter proportional to the
systems as Riecket al. have shown by temporally modulat- plane-wave pump-field amplitudé, is an effective signal

ng a.TW under.gomg a Hopf blfurca}t|0[r8], There is a]so detuning,A, is the pump field—cavity detuning which acts as
experimental evidence for the opposite phenomenon, i.e., tl“g nonlinear resonance parameter in EX), x is the trans-

unexpected transition from SWs to TWs in a rectangula,erse spatial coordinate, ands the time(see Ref[6] for
container excited by a horizontal sinusoidal motjé detaily. All quantities appearing in Eq1) are adimensional.

Here we show a boundary-free spontaneous symmetrquation(1) is valid for small, either positive or negative,
breaking mechanism that destabilizes TWs to SWs. It is §alues of the effective detuninyand close to the oscillation
bulk mechanismbased on the addition of some nonlinear threshold P~1). For the sake of simplicity, it has been
resonance effects to tlwmplexSwift-Hohenberg equation  assumed that the diffraction parameter for both the signal
at variance from previous reported mechanisms which, as faind idler fields are equdthe complete equation is given in
as we know, always rely on an external modulation of theRef. [6]) but this assumption is not essential for the results
system. described below.

The complex Swift-Hohenberg equatig@SHE [5] con- Equation(1) differs from the standard CSHE by the terms
stitutes a model equation that is able of describing a largenultiplied by Ay: the nonlinear resonance brought about by
variety of pattern forming systems, phase unlocked spatiallghe third term6,10] and the nonlocal nonlinear phase modu-
extended nonlinear optical systenidLOS) among them lation term[last term in Eq(1)]. For null or small values of
(see a discussion about this in Rg6]). Outstanding ex- Ag Eq. (1) reduces to the standard CSIfid, where SWSs are
amples of NLOSs describable by the CSHE are two-leveblways unstable. In the following we show that the extra
lasers[7] and optical parametric oscillatof©POS3 [6,8,9.  terms lead to the destabilization of TWs to SWs.

Through this paper we concentrate on the generalized CSHE First we derive amplitude equations for two counterpropa-
describing OPO46] in a slab waveguide configuration gating traveling waves. Assume pump values close to the
which confines the fields in one transverse direction,ysay oscillation threshold®=1+¢2p, and introduce a slow time
diffraction acting along thex direction (light propagates scaleT=¢2t. In order to take into account the different spa-
along a direction perpendicular to the plaxg. tial scales associated with the fact that a band of modes have

1063-651X/98/55)/4911(4)/$15.00 57 R4911 © 1998 The American Physical Society



RAPID COMMUNICATIONS

R4912 VICTOR J. SMICHEZ-MORCILLO et al. 57

5

FIG. 1. Intensities of the TW, SW, and AW solutions as a func- . . -
tion of the normalized wave number offs@=0 corresponds to a FIG. 2. Domains of existence and stability of the TW and SW
linearly resonant wayefor =5 as given by Eqs(6a), (6b), and solutions. The trivial solutlon loses stability at the boundsrgneu-
(7). The nonlinear resonance is clearly appreciated. Continuouti@! stability curve. For,u< TWs and SWs exist inside the region

(dashedl lines denote amplitude stablenstablé solutions. bounded byN. For >3 TWs and SWs exist between the left
branch ofN and the curve. (due to the nonlinear resonance; see
positive eigenvalues whep>0 it is necessary to introduce Fig. D. T\.Ns are amplitude stable in the region boundedby5Ws
the multiple spatial scalgg,=x, u=z&x). Thus the time and are amplitude stable between the curve SW an@etween curve
tial  derivati t 0 f ’ S&.— 2, P= 2 SW and the right branch df there is bistability between TWs and
spatia erva _|ves ransiorm - ascy=e%dr, = %o SWs. ETW and ESW denote the Eckhaus boundaries for TWs and
+s(2auaxo). It is further assumed that pump detuning is Sws, respectivelythe unstable regions are shadowed

large enough in order to appreciate the influence of the non-

linear resonance, i.eAg=¢ 15,. 9 f.=f.[u—2k>—(1-2k)(f2+2f2)
Next we look for the equations governing the evolution of
the slowly varying amplitudes of the pattern — (3 fA+3f2f2+14)], 6)

=¢[F,(u,T)ekoo+F_(u,T)e *o*]+0(?), (2) wheref. have been taken real without loss of generality.
Obviously, definitiong4) are valid provided thab,+ 0.
whereko=\— A is the wave number of the linearly resonant ~ Equations(5) admit two types of solutions apart from the
mode(A <0 is assumexd Substitution of the previous scales trivial one (f, =0, f_=0): unidirectional solutiongTW),
and expansion into Eq1) leads to an infinite set of differ- and bidirectional solutionssymmetric(SW) and asymmetric
ential equations which gives the searched amplitude equaAW)]. The unidirectional TW solutions are obtained by
tions after imposing a solvability condition at tleé order. ~making either(f ., =fqy, f_=0) or (f, =0, f_=fqy) in

The amplitude equations read Equations (5). The SW solution is obtained by making
f,=f_=fgwin Egs.(5). These solutions read
rF e =pF.— (|F+*+2|F 3|} .+ 2kgd5F -
o £2,,=(2k—1)* 2+ 1— 4K, (63)
1
— 83| = |Fu|*+3|FL?|F <2+ |F+|*|Fr—ikod
2| 5 [Pl BIF 2+ F ol | —ikody 12, =112, (6b)
X[—F.dyFi+2Fzd,F%+4d, Finally, the asymmetric bidirectional solutiong(f
X (|F |2+ 2|F~|2)F- . 3) =faws, f_=Ffaw_) and its symmetritread
F2e=(2k—1)+ \1—2p—ak+2k2, (7)

We concentrate on the solutioF , =, e'k¥, F_

=T _e KU that corresponds to two counterpropagating Both the TW(6a) and the SW6b) solutions can be bival-
waves with the same wave number. By introducing the reued depending on the pump valpe If x<3 both solutions
scaled variables and parameters are unique and exist for

=T, f.=00f., k=&gkok, m=p, (4) ke[—kyn k], Kn=Viu. ®)

the equations governing the evolutions of the amplitudes For u>3 both TW and SW exist fok e[ —ky k. ] being
read bivalued for
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kelkn kil ki=2(2u+1). 9 6

These results are summarized in Figs. 1 and 2. Note that the | O =
bidirectional asymmetric solutiof?) connects the TW and ™ o
SW solutions. O
Next we summarize the result of the linear stability analy- 41 n
sis of the previous solutions. The ftrivial solutid¢h, =0,
f_=0) loses stability atw=0, and foru>0 it is unstable 2 | -
for ke[ —ky,ky]. The asymmetric bidirectional solution f
AW (7) is always unstable, as well as the lower branches of ]
the TW and SW solutionghose corresponding to the minus 2= u e®®n
sign in Egs(6a and(6b)]. The single source of instability of . e®
the upper branch of the TW soluti¢6a) is the growth of the . 00 ° o ©
counterpropagating wave. The TW solution is stable in the o o o
domain where it is single valug®) and unstable where it is 50 © ©
double valued9). Thus foru< 3 the TW is always stable to 0 B, ' L q
the SW, and foru>3 it is unstable where it is bivalued. -2 0 2
Regarding the SW solutiof6b) it is stable only foru> 3 k
within the domain given by

ke[kewki 1, Kew=2(3+ 8u—3). 10 FIG. 3. Intensities of the TW and SW solutions corresponding to
€ [kswk.] sw=( r=3) (10 numerical simulations performed with the OPO microscopic equa-

jons forAy=5 andP=1.2, for whichu=5 [see(4)], as in Fig. 1.

Hence there exists a bistability domain between the TW an ) . )
or computational convenience the normalized wave number offset

SW patterns fok < [Ksw, k] (see Flg' 2 Th_e fact_that the k was varied by varying the effective detuniag(or, equivalently,
(unstablg¢ AW branch connects the instability points corre- . i A
. - S by varying the resonant wave numbey) while keeping the total
sponding to both the TW and SW solutions indicates that -~ : .
. o - - . wave number K.+ k) of the roll fixed (see[6] for detailg. Closed
these points correspond to subcritical pitchfork bifurcations

. ; . X bols denot litude stakjlenstabl lutions.
There remains to assess the existence of phase mstabl‘lqpen symbols denote amplitude stafflenstabl¢ solutions

ties. As we are considering only one transverse dlmen5|oqn the case in which the nonlocal nonlinear phase modulation

the only possible phase instability is the Eckhaus one. 'Aterm is absent, i.e., we have studied the modified CSHE
straightforward calculation leads to the conclusion that TWs T

and SWs are Eckhaus unstable for oY =(P—1)Y—|Y[]2Y— %(A—ﬁi—AolYV)ZY- (13)
TW: < 2k2 4k+3 (11) In this case the amplitude equations for the two counter-
H (2k+1)?’ propagating waves are similar to E¢) but with the last

term replaced by- 3(f4 +5f2f2 +3f4). In this case TWs
SW:u< [ 4k%+ 76k+ 21+ (2k+ 7)4k%+ 60k + 9]. are always stable to SWs while SWs are stable onlyfor
(12 >1in the domain given by

These boundaries are depicted in Figdashed lineswhere ke[ksw K], Ksw=—3+V2u+3. (14
the Eckhaus unstable regions are shadowed. Note that this
instability does not affect the TW-SW transition, but for ~ Thus, although TWs and SWs stably coexifor k
=1 e[kgw.kn]), there is no transition TWASW. Hence, the
In order to check the validity of these analytical results,nonlinear resonance is at the origin of the stabilization of
we have carried out numerical integrations of the OPO mi-SWs, and the loss of stability of TWs must be attributed to
croscopic equation§6] (see[6] for the integration proce- the joint action of the nonlinear resonance and the nonlocal
dure for parameter values compatible with the domain ofnonlinear phase modulation.
validity of the CSHE(1). Figure 3 shows the intensitif of In this paper we have demonstrated a bulk mechanism for
the calculated TW and the SW patterisee caption for pa- the symmetry breaking that leads from traveling waves to
rameter values Filled symbols correspond to stable solu- standing waves in a one-dimensional complex Swift-
tions. A good agreement is apparent when comparing withHohenberg equation, which describes, e.g., optical paramet-
Fig. 1. There is a relatively small quantitative discrepancyric oscillators in a slab waveguide geometry. The mechanism
between the theoretical and numerical values for the Eckhauwsonsists of the joint action of a nonlinear resonafveeich is
boundary (numerically the Eckhaus unstable domain forresponsible for the stabilization of the S\and a nonlocal
SWs is broader This discrepancy can be attributed to the nonlinear phase modulatiamvhich is necessary for the de-
fact that we are integrating the OPO microscopic equationstabilization of TW$. Thus, the symmetry breaking is not
and not the generalized CSHE. due to any external action on the systéns hard boundary
We can finally ask which is the role played by each of theconditions[2] or external modulatiorf3]). Our analytical
two extra terms added to the CSHE on the stabilization opredictions are in good agreement with numerical integra-
SWs and on the bistability between SWs and TWSs. For thattions of the microscopic equations of optical parametric os-
we have investigated the competition between TWs and SWeillators.
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Finally, let us comment that when two spatial dimensionsthe global attractor. This negative effect can be compensated,
are allowed, preliminary numerical and analytical studieshowever, by the inclusion of diffraction terms in E),
show that SWs are always unstable, mostly due to a zigzaghich in the OPO case appear as far as the diffraction coef-
instability. This instability, however, manifests only in the ficients of signal and idler fields are uneqi).
transient periods, since its actual role is in fact to mediate the Financial support from the Spanish DireatiGeneral de
disappearance of the SW as an attractor of the system, restvestigacim Cientfica y Tenica (DGYCIT) through
ing the TW(or some of its long wavelength perturbed states Project No. PB95-0778-C02-01 is acknowledged.
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