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Traveling-wave–standing-wave competition in a generalized complex Swift-Hohenberg equation
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~Received 20 January 1998!

We study both analytically and numerically the competition between traveling-wave and standing-wave
~SW! patterns in a unidimensional generalized complex Swift-Hohenberg equation~CSHE! appropriate for
describing nondegenerate optical parametric oscillation. We find that SWs can win this competition because of
the nonlinear resonance and nonlocal nonlinear phase modulation terms present in the CSHE. We also find a
domain of bistability between the two types of solutions. A good agreement between analytical predictions and
numerical simulation is found.@S1063-651X~98!50805-7#

PACS number~s!: 42.65.Sf, 47.54.1r
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The transition from traveling waves~TWs! to standing
waves~SWs! constitutes an interesting example of second
symmetry breaking which has been the subject of sev
investigations in pattern formation studies@1–4#. At a first
sight, TWs would be the preferred solution in infinitely e
tended phase unlocked systems while SWs would appear
natural solution when the spatially extended system is ei
limited by hard boundary conditions or is phase locked.

This simple scenario can nevertheless be distorted by
eral factors. Appropriate hard boundary conditions~e.g., re-
flecting walls! can stabilize SWs to TWs@1#, but intermedi-
ate states appear depending on the relative sizes of
defects induced by the boundary effects and of the transv
domain @2#; thus, the transition from TWs to SWs bein
nontrivial. Moreover, the symmetry breaking leading fro
TWs to SWs is possible in boundary-free phase unloc
systems as Rieckeet al. have shown by temporally modula
ing a TW undergoing a Hopf bifurcation@3#. There is also
experimental evidence for the opposite phenomenon, i.e.
unexpected transition from SWs to TWs in a rectangu
container excited by a horizontal sinusoidal motion@4#.

Here we show a boundary-free spontaneous symm
breaking mechanism that destabilizes TWs to SWs. It i
bulk mechanism~based on the addition of some nonline
resonance effects to thecomplexSwift-Hohenberg equation!
at variance from previous reported mechanisms which, as
as we know, always rely on an external modulation of
system.

The complex Swift-Hohenberg equation~CSHE! @5# con-
stitutes a model equation that is able of describing a la
variety of pattern forming systems, phase unlocked spati
extended nonlinear optical systems~NLOS! among them
~see a discussion about this in Ref.@6#!. Outstanding ex-
amples of NLOSs describable by the CSHE are two-le
lasers@7# and optical parametric oscillators~OPOs! @6,8,9#.
Through this paper we concentrate on the generalized CS
describing OPOs@6# in a slab waveguide configuratio
which confines the fields in one transverse direction, sayy,
diffraction acting along thex direction ~light propagates
along a direction perpendicular to the planexy!.
571063-651X/98/57~5!/4911~4!/$15.00
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In optical parametric oscillation ax (2) medium placed
inside an optical cavity transforms, through a dow
conversion two-photon process, a coherent driving field
frequencyvL into two fields of frequenciesf 1vL ~signal!
and f 2vL ~idler! ( f 11 f 251). When the fields are nearl
resonant with three longitudinal modes of the cavity, OP
are capable of forming complex spatial structur
@6,8,10,11#. In Ref. @6# we have shown that the order param
eter equation for an OPO is the following generalization
the CSHE:

] tY5~P21!Y2uYu2Y2 1
2 ~D2]x

22D0uYu2!2Y

1 1
2 D0Y~Y* ]x

2Y2Y]x
2Y* !, ~1!

where Y is the order parameter~proportional to the signa
field amplitude!, P is a real parameter proportional to th
plane-wave pump-field amplitude,D is an effective signal
detuning,D0 is the pump field–cavity detuning which acts
a nonlinear resonance parameter in Eq.~1!, x is the trans-
verse spatial coordinate, andt is the time~see Ref.@6# for
details!. All quantities appearing in Eq.~1! are adimensional.
Equation~1! is valid for small, either positive or negative
values of the effective detuningD and close to the oscillation
threshold (P'1). For the sake of simplicity, it has bee
assumed that the diffraction parameter for both the sig
and idler fields are equal~the complete equation is given i
Ref. @6#! but this assumption is not essential for the resu
described below.

Equation~1! differs from the standard CSHE by the term
multiplied by D0 : the nonlinear resonance brought about
the third term@6,10# and the nonlocal nonlinear phase mod
lation term@last term in Eq.~1!#. For null or small values of
D0 Eq. ~1! reduces to the standard CSHE@6#, where SWs are
always unstable. In the following we show that the ex
terms lead to the destabilization of TWs to SWs.

First we derive amplitude equations for two counterprop
gating traveling waves. Assume pump values close to
oscillation thresholdP511«2p, and introduce a slow time
scaleT5«2t. In order to take into account the different sp
tial scales associated with the fact that a band of modes h
R4911 © 1998 The American Physical Society
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positive eigenvalues whenp.0 it is necessary to introduc
the multiple spatial scales~x05x, u5«x!. Thus the time and
spatial derivatives transform as] t5«2]T , ]x

25]x0

2

1«(2]u]x0
). It is further assumed that pump detuning

large enough in order to appreciate the influence of the n
linear resonance, i.e.,D05«21d0 .

Next we look for the equations governing the evolution
the slowly varying amplitudes of the pattern

Y5«@F1~u,T!eik0x01F2~u,T!e2 ik0x0#1O~«2!, ~2!

wherek05A2D is the wave number of the linearly resona
mode~D,0 is assumed!. Substitution of the previous scale
and expansion into Eq.~1! leads to an infinite set of differ
ential equations which gives the searched amplitude eq
tions after imposing a solvability condition at the«3 order.
The amplitude equations read

]TF65pF62~ uF6u212uF7u2!F612k0
2]u

2F6

2d0
2S 1

2
uF6u413uF6u2uF7u21uF7u4DF62 ik0d0

3@2F6]uF6* 12F7]uF7* 1]u

3~ uF6u212uF7u2!#F6 . ~3!

We concentrate on the solutionF15 f̃ 1ei k̃ u, F2

5 f̃ 2e2 i k̃ u that corresponds to two counterpropagati
waves with the same wave number. By introducing the
scaled variables and parameters

t5d0
2T, f 6[d0 f̃ 6 , k[d0k0k̃, m[d0

2p, ~4!

the equations governing the evolutions of the amplitudesf 6

read

FIG. 1. Intensities of the TW, SW, and AW solutions as a fun
tion of the normalized wave number offset~k50 corresponds to a
linearly resonant wave! for m55 as given by Eqs.~6a!, ~6b!, and
~7!. The nonlinear resonance is clearly appreciated. Continu
~dashed! lines denote amplitude stable~unstable! solutions.
n-

f

a-

-

]t f 65 f 6@m22k22~122k!~ f 6
2 12 f 7

2 !

2~ 1
2 f 6

4 13 f 6
2 f 7

2 1 f 7
4 !#, ~5!

where f 6 have been taken real without loss of generali
Obviously, definitions~4! are valid provided thatd0Þ0.

Equations~5! admit two types of solutions apart from th
trivial one ~f 150, f 250!: unidirectional solutions~TW!,
and bidirectional solutions@symmetric~SW! and asymmetric
~AW!#. The unidirectional TW solutions are obtained b
making either~f 15 f TW , f 250! or ~f 150, f 25 f TW! in
Equations ~5!. The SW solution is obtained by makin
f 15 f 25 f SW in Eqs.~5!. These solutions read

f TW
2 5~2k21!6A2m1124k, ~6a!

f SW
2 5 1

3 f TW
2 . ~6b!

Finally, the asymmetric bidirectional solutions@~f 1

5 f AW1 , f 25 f AW2! and its symmetric# read

f AW6
2 5~2k21!6A12 2

3 m24k1 16
3 k2. ~7!

Both the TW~6a! and the SW~6b! solutions can be bival-
ued depending on the pump valuem. If m, 1

2 both solutions
are unique and exist for

kP@2kN ,kN#, kN5A1
2 m. ~8!

For m. 1
2 both TW and SW exist forkP@2kN ,kL# being

bivalued for

-

us

FIG. 2. Domains of existence and stability of the TW and S
solutions. The trivial solution loses stability at the boundaryN ~neu-
tral stability curve!. For m,

1
2 TWs and SWs exist inside the regio

bounded byN. For m.
1
2 TWs and SWs exist between the le

branch ofN and the curveL ~due to the nonlinear resonance; s
Fig. 1!. TWs are amplitude stable in the region bounded byN. SWs
are amplitude stable between the curve SW andL. Between curve
SW and the right branch ofN there is bistability between TWs an
SWs. ETW and ESW denote the Eckhaus boundaries for TWs
SWs, respectively~the unstable regions are shadowed!.
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kP@kN ,kL#, kL5 1
4 ~2m11!. ~9!

These results are summarized in Figs. 1 and 2. Note tha
bidirectional asymmetric solution~7! connects the TW and
SW solutions.

Next we summarize the result of the linear stability ana
sis of the previous solutions. The trivial solution~f 150,
f 250! loses stability atm50, and form.0 it is unstable
for kP@2kN ,kN#. The asymmetric bidirectional solutio
AW ~7! is always unstable, as well as the lower branches
the TW and SW solutions@those corresponding to the minu
sign in Eqs.~6a! and~6b!#. The single source of instability o
the upper branch of the TW solution~6a! is the growth of the
counterpropagating wave. The TW solution is stable in
domain where it is single valued~8! and unstable where it is
double valued~9!. Thus form, 1

2 the TW is always stable to
the SW, and form. 1

2 it is unstable where it is bivalued
Regarding the SW solution~6b! it is stable only form. 1

2

within the domain given by

kP@kSW,kL#, kSW5 1
8 ~31A8m23!. ~10!

Hence there exists a bistability domain between the TW
SW patterns forkP@kSW,kN# ~see Fig. 2!. The fact that the
~unstable! AW branch connects the instability points corr
sponding to both the TW and SW solutions indicates t
these points correspond to subcritical pitchfork bifurcatio

There remains to assess the existence of phase inst
ties. As we are considering only one transverse dimens
the only possible phase instability is the Eckhaus one
straightforward calculation leads to the conclusion that T
and SWs are Eckhaus unstable for

TW:m,2k2
4k13

~2k11!2 , ~11!

SW:m, 1
16 @4k2176k1216~2k17!A4k2160k19#.

~12!

These boundaries are depicted in Fig. 2~dashed lines! where
the Eckhaus unstable regions are shadowed. Note that
instability does not affect the TW-SW transition, but form
* 1

2 .
In order to check the validity of these analytical resul

we have carried out numerical integrations of the OPO
croscopic equations@6# ~see @6# for the integration proce-
dure! for parameter values compatible with the domain
validity of the CSHE~1!. Figure 3 shows the intensityf 2 of
the calculated TW and the SW patterns~see caption for pa-
rameter values!. Filled symbols correspond to stable sol
tions. A good agreement is apparent when comparing w
Fig. 1. There is a relatively small quantitative discrepan
between the theoretical and numerical values for the Eckh
boundary ~numerically the Eckhaus unstable domain f
SWs is broader!. This discrepancy can be attributed to t
fact that we are integrating the OPO microscopic equati
and not the generalized CSHE.

We can finally ask which is the role played by each of t
two extra terms added to the CSHE on the stabilization
SWs and on the bistability between SWs and TWs. For t
we have investigated the competition between TWs and S
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in the case in which the nonlocal nonlinear phase modula
term is absent, i.e., we have studied the modified CSHE

] tY5~P21!Y2uYu2Y2 1
2 ~D2]x

22D0uYu2!2Y. ~13!

In this case the amplitude equations for the two coun
propagating waves are similar to Eq.~5! but with the last
term replaced by2 1

2 ( f 6
4 15 f 6

2 f 7
2 13 f 1

4 ). In this case TWs
are always stable to SWs while SWs are stable only form
. 1

2 in the domain given by

kP@kSW8 ,kL#, kSW8 52 3
2 1A2m13. ~14!

Thus, although TWs and SWs stably coexist~for k
P@kSW8 ,kN#!, there is no transition TW→SW. Hence, the
nonlinear resonance is at the origin of the stabilization
SWs, and the loss of stability of TWs must be attributed
the joint action of the nonlinear resonance and the nonlo
nonlinear phase modulation.

In this paper we have demonstrated a bulk mechanism
the symmetry breaking that leads from traveling waves
standing waves in a one-dimensional complex Sw
Hohenberg equation, which describes, e.g., optical param
ric oscillators in a slab waveguide geometry. The mechan
consists of the joint action of a nonlinear resonance~which is
responsible for the stabilization of the SWs! and a nonlocal
nonlinear phase modulation~which is necessary for the de
stabilization of TWs!. Thus, the symmetry breaking is no
due to any external action on the system~as hard boundary
conditions @2# or external modulation@3#!. Our analytical
predictions are in good agreement with numerical integ
tions of the microscopic equations of optical parametric
cillators.

FIG. 3. Intensities of the TW and SW solutions corresponding
numerical simulations performed with the OPO microscopic eq
tions forD055 andP51.2, for whichm55 @see~4!#, as in Fig. 1.
For computational convenience the normalized wave number o
k was varied by varying the effective detuningD ~or, equivalently,
by varying the resonant wave numberk0! while keeping the total
wave number (k01 k̃) of the roll fixed ~see@6# for details!. Closed
~open! symbols denote amplitude stable~unstable! solutions.
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Finally, let us comment that when two spatial dimensio
are allowed, preliminary numerical and analytical stud
show that SWs are always unstable, mostly due to a zig
instability. This instability, however, manifests only in th
transient periods, since its actual role is in fact to mediate
disappearance of the SW as an attractor of the system,
ing the TW~or some of its long wavelength perturbed stat!
D
la
s
s
ag

e
st-

the global attractor. This negative effect can be compensa
however, by the inclusion of diffraction terms in Eq.~1!,
which in the OPO case appear as far as the diffraction c
ficients of signal and idler fields are unequal@6#.
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